Differentiating convex functions constructively

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost periodic functions, constructively

Almost periodic functions form a natural example of a non-separable normed space. As such, it has been a challenge for constructive mathematicians to find a natural treatment of them. Here we present a simple proof of Bohr’s fundamental theorem for almost periodic functions which we then generalize to almost periodic functions on general topological groups.

متن کامل

Uniformly convex Banach spaces are reflexive - constructively

We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the MilmanPettis theorem that uniformly convex Banach spaces are reflexive. Our aim in this note is to present a fully constructive analysis of the Milman-Pettis theorem [11, 12, 9, 13]: a uniformly convex Banach space is reflexive. First, t...

متن کامل

Some Results on Convex Spectral Functions: I

In this paper, we give a fundamental convexity preserving for spectral functions. Indeed, we investigate infimal convolution, Moreau envelope and proximal average for convex spectral functions, and show that this properties are inherited from the properties of its corresponding convex function. This results have many applications in Applied Mathematics such as semi-definite programmings and eng...

متن کامل

JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.

متن کامل

L-convex Functions and M-convex Functions

In the field of nonlinear programming (in continuous variables) convex analysis [22, 23] plays a pivotal role both in theory and in practice. An analogous theory for discrete optimization (nonlinear integer programming), called " discrete convex analysis " [18, 17], is developed for L-convex and M-convex functions by adapting the ideas in convex analysis and generalizing the results in matroid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Logic and Analysis

سال: 2020

ISSN: 1759-9008

DOI: 10.4115/jla.2020.12.8